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Genomic instability, the unresolved accumulation of DNA variants,
is hypothesized as one of the contributors to the natural aging
process. We assessed the frequency of unresolved DNA damage
reaching the transcriptome of the murine myocardium during the
course of natural aging and in hearts from four distinct mouse
models of premature aging with established aging-related cardiac
dysfunctions. RNA sequencing and variant calling based on total
RNA sequencing was compared between hearts from naturally
aging mice, mice with cardiomyocyte-specific deficiency of Ercc1,
a component of the DNA repair machinery, mice with reduced
mitochondrial antioxidant capacity, Tert-deficient mice with re-
duced telomere length, and a mouse model of human Hutchinson–
Gilford progeria syndrome (HGPS). Our results demonstrate that
no enrichment in variants is evident in the naturally aging murine
hearts until 2 y of age from the HGPS mouse model or mice with
reduced telomere lengths. In contrast, a dramatic accumulation of
variants was evident in Ercc1 cardiomyocyte-specific knockout
mice with deficient DNA repair machinery, in mice with reduced
mitochondrial antioxidant capacity, and in the intestine, liver, and
lung of naturally aging mice. Our data demonstrate that genomic
instability does not evidently contribute to naturally aging of the
mouse heart in contrast to other organs and support the contention
that the endogenous DNA repair machinery is remarkably active to
maintain genomic integrity in cardiac cells throughout life.
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As Cicero stated “Senectus autem aetatis est peractio tanquam
fabulae” (old age the crown of life, our play’s last act) in this

famous aphorism from his philosophical work De senectute, age is
one of the most familiar phenomena that every person will un-
mistakably face. Yet, aging remains a poorly understood aspect
of human biology; almost every significant discovery in the his-
tory of cellular and molecular biology has led to the development
of a new theory of aging, and when Medvedev in the ’90s tried to
give a comprehensive overview on the subject, he had to face a
list of more than 300 different and sometimes opposite theories
(1). Nowadays, aging is regarded as a complex process resulting
from the synergistic contribution of several causes, such as epi-
genetic, proteotoxic, and oxidative stresses, telomere shortening,
and unresolved DNA damages (2–5). The growing number of
alterations of the molecular structures inside the cells gradually
hamper key functions and eventually provoke effects at the organ
and organism level, the manifestation of which is aging (6).

DNA is susceptible to environmental and intracellular assaults,
including ultraviolet (UV) radiations, tobacco smoke, oxidative
damage, and errors introduced by DNA replication. These factors
can cause oxidation or deamination of specific bases or the in-
troduction of single- and double-strand breaks followed by ge-
nome rearrangements. To ensure genomic stability, an intricate
machinery of repair, damage tolerance, and checkpoint pathways
has evolved that can ultimately determine the survival of the cell
or its replicative senescence and death (5).
Cardiovascular diseases (CVD), such as heart failure, athero-

sclerosis, and myocardial infarction, are commonly considered as
aged-related pathological conditions: in fact, both the prevalence
and incidence of these illnesses are higher among the elderly (7).
With increasing age, the cardiovascular system gradually undergoes
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a series of functional, structural, and cellular changes that con-
tribute to CVD occurrence, including alterations in the left ven-
tricular (LV) systolic and diastolic function, increased incidence of
sinus dysfunctions, myocardial hypertrophy, arterial stiffness, and
fibrosis (8–10).
It is generally accepted that age-associated CVDs develop due

to the accumulation of the aforementioned cardiovascular risk
factors in combination with the genetic make-up of each indi-
vidual (8–10). On the contrary, very little is known about the
molecular pathways underlying these pathologies. Studies have
been performed to assess genomic instability during natural
cardiac aging as a possible contributor to the development of
CVDs. By using transgenic mice, it has been shown that the
mutation spectrum in the old heart is characterized by large
genome rearrangements rather than point mutations (11, 12).
Here, we addressed whether genomic or transcriptomic instability

contributes to myocardial natural aging compared to four models of
premature senescence: mice with cardiomyocyte-specific knock-out
(KO) of excision repair cross-complementation group 1 (Ercc1), a
component of the DNA repair machinery; mice manifesting re-
duced mitochondrial antioxidant capacity due to apoptosis inducing
factor mitochondria associated 1 (Aifm1) haploinsufficiency, a
telomerase reverse transcriptase (Tert)-deficient mouse model with
reduced telomere length; and finally, a mouse model of human
Hutchinson-Gilford progeria syndrome (HGPS). In particular, we
focused on the impact that DNA damage accumulation can have on
the transcriptomic stability. Surprisingly, via total RNA- and DNA-
sequencing (RNA-seq and DNA-seq, respectively) and variant
calling analysis, we demonstrated a general transcriptomic stability
of hearts of natural and accelerated aging mice reflecting a com-
parable genomic stability. Our results question the actual decrease
in functionality of the DNA repair machinery traditionally consid-
ered one of the causes of senescence.

Results
Variant Calling in Natural and Accelerated Aging. To address
whether genomic instability occurs in the progressively aging
myocardium, we performed variant calling in RNA-seq data from
cardiac tissue of naturally aging mice of 12, 52, and 104 wk of age.
We also included hearts from four different mouse models of
accelerated aging: mice with cardiomyocyte specific KO of Ercc1,
Tert KO mice, mice harboring the Hq mutation characterized by
haploinsufficiency of Aifm1, and LmnaG609G/G609G mice geno- and
phenocopying the point mutation found in HGPS patients (Fig.
1A). The (prematurely) aged models differentially manifested
spontaneous cardiac phenotypes, ranging from no symptoms to
severe heart failure (SI Appendix, Fig. 1).
When we compared the three distinct points in naturally aging

mice against the reference genome GRCm38, remarkably few
transcriptomic variants were observed, and the number of vari-
ants also did not accumulate in the heart over time, averaging to
3,138 [95% CI (2821;3456)], 2,905 [95% CI (2114;3697)], and
3,220 [95% CI (2071;4368)] at 12, 52, and 104 wk, respectively
(SI Appendix, Table 1). Between the different natural aging
models, the majority of transcripts expressed was detected at all
time points (88 to 92%). Next, we compared the naturally aged
mice of 12 wk of age with the four distinct models of premature
aging, since this time point in natural aging was the closest to the
maximal life span of the other models (Fig. 1A). The accelerated
aging models fell into two categories. In the first category, the Hq
and Ercc1-deficient models accumulated a significant higher
number of single-nucleotide variants (SNPs). Although only the
Ercc1 model showed clear statistical significance, both models
reached counts of no less than five- and 15-fold more variants
compared to any time point of the naturally aged hearts, respec-
tively (mean 15,050 ± 2,106 and mean 48,366 ± 11,920 variants; SI
Appendix, Table 1). We anticipate that increasing the sample size
would show a strong statistical significance for both models. On

the other hand, the LmnaG609G/G609G and Tert knockout (G3 with
short telomeres) models did not accumulate significantly more
SNPs compared to natural aging (mean 4,187 ± 262 and 4,167 ±
115 for LmnaG609G/G609G and Tert knockout mice, respectively).
Taken together, the dispersion plot representation of total number
of variants in each model essentially demonstrates the absence
of genomic instability in all naturally aged models, the
LmnaG609G/G609G and the Tert knockout mice. In contrast, in Hq
mice with excess mitochondrial reactive oxygen species accumu-
lation and in Ercc1-deficient mice with deficiency in the DNA
repair machinery, an increasing number of variants accumulated
in their transcriptomes (Fig. 1B).

Variants Accumulate across the Genome. Next, variant distribution
was visualized in a density plot across the mouse genome (Fig. 2).
The graphical representation of the data demonstrates that the
entire genome accumulated mutations roughly evenly distributed
in the Hq and in the Ercc1-deficient mice while essentially no
variants were observed in all other models.
The myocardium contains multiple cell types, such as endo-

thelial cells, fibroblasts, and inflammatory cells in addition to car-
diomyocytes. The genetic material derived from cardiomyocytes is
proportionally lower than the nonmyocytes fraction and decreases
with age (13–15); thus, to specifically assess the genomic stability of

A

B

Fig. 1. Experimental design and variant calling results summary. (A) Time-
line of heart tissue collected for subsequent sequencing and variant calling.
(B) SNP counts per each of the considered aging mouse models (n = 4 for
each model). NA12W, natural aging 12-wk old; NA52W, natural aging 52-wk
old; and NA104W, natural aging 104-wk old. Data are represented as
mean ± SEM * indicates P < 0.0001 versus NA12W.
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cardiomyocytes, we focused on Myh6, a canonical cardiomyocyte-
specific gene. The Myh6 gene in natural aging, LmnaG609G/G609G,
and Tert KO mice do not show accumulation of mutations com-
pared to the reference genome. A roughly evenly distributed
number of variants throughout the genomic locus was observed in
the Hq model and Ercc1-deficient mice, even affecting intragenic
genes such as miR-208a and the long-noncoding RNA Mhrt (Fig.
3). Conclusively, these results confirm the previously described
discordant genomic instability patterns in the distinct mouse
models. Interestingly, this trend is confirmed when analyzing ge-
netic loci that are expressed specifically in cardiomyocytes.

Variant Distribution Pattern in Ercc1-Deficient and Wild-Type Mice Is
Similar at the Whole-Genome Level. To validate the results
obtained from the RNA-seq analysis and to exclude possible bias
of the SNPs calling coming from expressed RNA transcripts only,
we performed whole-genome sequencing in a heart of naturally
aged mice of 104 wk of age and from mice with cardiomyocyte
specific Ercc1-deficiency. The naturally aged heart displayed
18,274 variants, the Ercc1-deficient heart 1,492,451. The distri-
bution of the variants across the mouse genome is visualized in a
density plot (Fig. 4A). The data confirm that genetic variants are
distributed across the genome of Ercc1-deficient mice, while
essentially no variants are observed in the naturally aged model.
These results are in accordance with the results obtained with
RNA-seq, indicating that the differences in mutation rates at the
transcriptome level between the aging models reflect differences
in the DNA repair machinery efficiency. Variant accumulation
was independent of transcriptional or cell cycle activation status
(SI Appendix, Figs. 1 and 2). Finally, we also zoomed in to the
locus of the cardiomyocyte-specific gene Myh6 (Fig. 4B). While
in natural aging mice, no accumulation of variants was observed
in Myh6 or any of the intragenic genes such as miR-208a and the
long-noncoding RNA Mhrt compared to the reference genome,
variants were roughly evenly distributed in Ercc1-deficient mice.
Finally, whole-genome sequencing and variant calling was

performed on small intestine, lung, and liver from naturally aged

mice of 12 wk and 104 wk of age. Small intestine, lung, and liver
are highly proliferative tissues and characterized by spontaneous
tumor growth in senescent mice, since the accumulation of un-
resolved mutations is one of the leading causes of neoplasia. As
described previously for liver, lung, and small intestine (16, 17),
we do observe a significant accumulation of mutational burden
in small intestine, lung, and liver with age (SI Appendix, Table 2)
as well as differences for the mutational burden between these
organs, proving the sensitivity and specificity of our next-generation
sequencing (NGS) approach. Taken together, whole-genome se-
quencing confirmed the reliability of the variant calling technique
and reinforced the conclusion that discordant genomic instability
patterns are evident in distinct aging mouse models and among
different organs.

Discussion
Here, we investigated the impact of transcriptomic accumulation
variants in the aging myocardium. Our main results demonstrate
that no enrichment in variants is evident in the naturally aging
murine hearts nor in hearts from the LmnaG609G/G609G or the
G3 Tert KO models. In contrast, a substantial accumulation of
alterations were found in Ercc1 cardiomyocyte-specific knockout
mice, as can be expected by the depletion of one of the com-
ponents of the DNA repair machinery. A similar trend was ob-
served in hearts from the Hq model, characterized by higher
oxidative stress sensitivity; however, possibly due to the sample
size, this tendency did not reach statistical significance. Whole-
genome sequencing results support the striking difference ob-
served between naturally aged and Ercc1 cardiomyocyte-specific
knockout mice. Importantly, genomic instability was not corre-
lated with the severity of cardiac phenotypes in the models, since
LmnaG609G/G609G mice show no significant accumulation of geno-
mic variants, while Ercc1-deficient mice did show a high mutational
burden, even though both models suffer from spontaneous devel-
opment of heart failure. While we do not observe an accumulation
of mutations in the naturally aging heart, we do observe such
phenomena in liver, spleen, and intestinal tissues as described

Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19 ChrX

Chr1 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19 ChrX

Chr1 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19 ChrX

Chr1 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19 ChrX

Chr1 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19 ChrX

Chr1 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19 ChrX

Chr2

Chr2

Chr2

Chr2

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

D
en

si
ty

Position in genome

Natural aging 104 weeks

Ercc1-deficient

Progeria

Harlequin

Tert-deficient

Natural aging 12 weeks

Chr2

Fig. 2. Variant distribution across the transcriptome. Density plots of variants across the transcriptome for each mouse model. The red-dashed lines include
the regions affected by the model construction of Tert-deficient (27.3 Mb around Tert gene) and Progeria (18.1 Mb around Lmna gene) and subsequently
excluded from further analysis.

De Majo et al. PNAS | 3 of 8
Genomic instability in the naturally and prematurely aged myocardium https://doi.org/10.1073/pnas.2022974118

G
EN

ET
IC
S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
28

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2022974118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2022974118/-/DCSupplemental
https://doi.org/10.1073/pnas.2022974118


www.manaraa.com

previously (16, 17). This clearly supports the notion that different
tissues are accumulating mutations at divergent rates and, in fact,
that our observation of the absence of such a phenomenon in
myocardial tissue is a valid observation.
The first and unexpected outcome of our findings is the con-

servation of transcriptome integrity in the naturally aged myo-
cardium until 2 y of age, which contradicts previous studies
supporting age-related genomic instability as a contributor to
cellular loss and overall degeneration of the heart occurring with
senescence (11, 12). Past studies used LacZ-transgenic reporter
mice to evaluate pattern and frequency of DNA mutations in a
particular locus; the integration of a LacZ reporter, though, can
change the epigenetic genomic landscape and sensitizes the
transgenic genomic region to distorted accumulation of mutations.
In contrast, our approach based on total RNA-seq can detect
whether DNA variants accumulate anywhere in the coding and
noncoding transcriptome. These studies also describe the muta-
tion spectrum in the old murine heart as characterized by large
genome rearrangements rather than point mutations. In contrast,
we did not detect such large rearrangements in our transcriptome
and genome data, suggesting that most genomic deletions do not
contribute to transcriptome or genome alterations to a large ex-
tent. Notwithstanding the possibility that DNA mutations might

still occur and possibly increase with age in genomic regions un-
related to transcriptional control, our data strongly suggest that
the DNA repair machinery remains remarkably functional during
the physiological stages of cardiac aging.
The adult murine myocardium is composed of ∼30% myo-

cytes, 40% endothelial cells, 15% hematopoietic-derived cells,
and 15% fibroblasts (18); the vast majority of cardiomyocytes is
postmitotic, binuclear, and withdraw from the cell cycle soon
after birth, excluding a very small fraction (<1%) which con-
serves proliferating capacity as mononuclear cells. With aging,
the number of myocytes decreases, and interstitial fibrosis dou-
bles as a reparative mechanism (13–15). Although it could be
argued that cardiomyocyte nuclei constitute maximally 50% of
myocardial DNA content and genomic instability could be a
phenomenon that occurs primarily in nonmyocytes, the tran-
scriptional output of heart muscle cells accounts for the most
abundant cardiac RNA transcripts of genes encoding prototyp-
ical sarcomere components and ion channels. Therefore, we
additionally focused onMhy6 transcripts encoding the exclusively
heart muscle–expressed cardiac alpha-myosin heavy chain and
could demonstrate the same pattern of genomic instability—
negligible in physiologically aging myocardium and hearts from
Tert KO and LmnaG609G/G609G mice and abundant in hearts
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lacking a component of the DNA repair machinery (Ercc1
knockouts) or exposed to excessive oxidative stress (Hq hap-
loinsufficient mutants). Finally, the prematurely aged Ercc1
knockout mouse model was generated by deleting a floxed allele
selectively in heart muscle cells upon activation of Cre recom-
binase under control of the myosin heavy chain promoter, which
is inactive in nonmyocytes postnatally. Accordingly, our data
suggest that even in adult postmitotic cardiomyocytes, the DNA
repair machinery seems fully operative and able to maintain
genomic and transcriptomic stability. Our findings are consistent
with the notion that heart muscle cells continuously renew them-
selves from within and in response to environmental stimuli (such
as metabolic and/or hemodynamic stresses) by protein turnover,
meaning that if not actively proliferating, this cell type is tran-
scriptionally very active to synthetize and renew large amounts of
new protein products. A well-functioning DNA repair machinery
becomes therefore essential to avoid permanent alterations of the
primary sequence of the genome and chromosomal rearrange-
ments, which would most likely have consequences at the tran-
scriptome and proteome level. In fact, any metabolically active cell,
even when not replicating, will require an efficient repair system
to preserve the integrity of the DNA, especially of the most-
transcribed loci, since transcription itself has the potential to in-
troduce mutations by stimulating loss of heterozygosity and by
generating diverse types of rearrangements, such as deletions,
duplications, inversions, and translocations (19).
As generally accepted and extensively reported previously (4,

5), our results agree with the postulated premise that excessive
oxidative stress can directly cause cardiac DNA damage. Indeed,
in the transcriptome of Hq mice, characterized by reduced effi-
ciency of mitochondrial antioxidant activity, an accumulation of
variants was detected, albeit not statistically significant with the

current number of biological replicates, suggesting that high
levels of reactive oxygen species (ROS) can affect genome and
transcriptome integrity. Therefore, we were able to provide a
proof of the effect of oxidative stress on DNA integrity in the
context of a model showing a considerable shortening of life-
span and severe cardiovascular and skeletal muscle pathologies
(20), thus correlating genomic instability with oxidative stress,
aging, and CVD. Of note, however, our observation that the
transcriptome remains stable in naturally aging hearts, in which
ROS accumulation is not as dramatic as the one observed in the
Hq model, questions whether gradually increasing oxidative
stress and concomitant genomic instability plays a direct caus-
ative role during physiological cardiac aging. A second and
more provocative explanation is that the mechanisms underly-
ing natural myocardial aging in mice and humans are funda-
mentally too distinct to allow for a direct comparison and the
use of the mouse as an experimental model for research in this
field. While for humans over 65 y, the most common causes of
mortality are CVD, senescent laboratory rodents usually die
from neoplasia, with very rare occurrence of cardiovascular
abnormalities (21, 22).
In conclusion, our results demonstrate that genomic and

transcriptomic instability do not evidently contribute to the natural
aging of murine hearts nor to the phenotype of the hearts from a
mouse model that faithfully mimics the human HGPS genetic
disorder. Only in prematurely aged mouse models with heart-
restricted deletion of the DNA repair machinery or severely im-
paired mitochondrial antioxidant capacity was genomic instability
abundant. Our data are in support of a very-active DNA repair
machinery to maintain genomic integrity in cardiac cells.
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Methods
Mouse Models. As models for natural aging, male and female wild-type
B6129F1 mice of 12-, 52-, and 104-wk-old were included to represent the
young (12 wk), adult (52 wk), and old (104 wk) phases of the murine life-
span. Wild-type B6129F1 mice show normal development. In 104-wk-old
mice, signs of fibrosis, LV wall thinning, ventricular dilation, and reduced
contractility are evident (23).

As a first model for accelerated aging, female mice harboring a null
mutation in the Tert gene on a C57BL/6J genetic background and crossbred
to the third generation (G3) to achieve critical telomere shortening were
used (24, 25). Tert is responsible for a de novo addition of telomeric repeats
on chromosomal ends. In mice and humans, telomerase is silenced after
birth, leading to progressive telomere shortening throughout the lifespan
(26–28). Age-related shortening of telomeres triggers the DNA damage re-
sponse and the induction of cellular senescence or apoptosis. G3 Tert mice
with shortened telomeres secondary to telomerase deficiency only show
spontaneous development of mild fibrosis and no other signs of cardiac
dysfunction (SI Appendix, Fig. 3).

As a secondmodel for accelerated aging, malemice between 17 and 20wk
of age carrying the Hq mutation on a B6CBACa-Aw-J/A (B6CBA) background
were used that are hemizygous for a proviral insertion in the first intron of
Aifm1 resulting in an 80% reduction in the expression of this gene (29).
Aifm1 is localized at the mitochondrial intermembrane space level with a
prosurvival role as free radical scavenger. Hq mice show a wide spectrum of
pathological conditions, including neuronal loss, progressive retinal degen-
eration, ataxia, and reduced lifespan to less than 6 mo. Hq animals display
no discernible spontaneous cardiovascular abnormalities. The introduction
of cardiac injury by ischemia/reperfusion, however, results in a more severe
outcome in Hq mice, with increased cardiomyocyte apoptotic and necrotic
death and accelerated progression toward maladaptive LV remodeling (30).

A third progeroid model is the LmnaG609G/G609G knock-in mouse model
(31). We used 16-wk-old male mice on a C57BL/6J genetic background car-
rying a point mutation (c.1827C > T; p.G609G) in the Lmna gene that mimics
the human genetic disorder HGPS (32). This mutation results in ubiquitous
production of progerin, a mutant form of protein lamin A. Progerin lacks
the proteolytic cleavage site required for normal lamin A maturation and
stays permanently anchored to the inner part of the nuclear membrane,
making it stiffer, fragile, and more sensitive to mechanical stress (33, 34).
LmnaG609G/G609G mice display most of the clinical manifestations of HGPS
patients, including postnatal growth impairment, lipodystrophy, and re-
duced survival. Compared with age-matched wild-type mice, 16-wk-old ho-
mozygous LmnaG609G/G609G mice present fibrosis and electrocardiographic
alterations (lower heart rate, prolonged PQ and QT intervals, and T-wave
flattening), preserved systolic function indicated by normal values for both
LV and right ventricular ejection fraction (EF), diastolic dysfunction indicated
by reduced mitral valve E/A ratio, and increased isovolumetric relaxation
time (IVRT) (35). Taken together, these results suggest that LmnaG609G/G609G

mice develop heart failure with preserved ejection fraction.
Finally, male and female Ercc1 cardiomyocyte-specific knockout mice of 16

wk of age were used as fourth model of accelerated aging. Mice harboring
floxed alleles in Ercc1 were generated in a 129P2/OlaHsd background as
described previously (36) and crossbred with mice harboring Cre recombi-
nase under control of the murine Myh6 promoter in a C57BL/6J background
(37), resulting in cardiomyocyte-specific Ercc1 gene deletion. Ercc1 is a
component of the nucleotide excision repair pathway required for removing
UV-induced DNA damages and interstrand crosslinks (38). Mice harboring a
homozygous Ercc1 null mutation exhibit impaired growth and several
features of premature aging and a markedly reduced lifespan to a maxi-
mal age of 8 to 10 wk (39, 40). Cardiomyocyte-specific Ercc1-deficient mice
spontaneously develop all characteristics of systolic heart failure with ex-
tensive fibrosis, severe reduction of contractile function, and induction of
fetal genes, and they succumb to heart failure within a lifespan of 23 wk
(SI Appendix, Fig. 1).

All protocols were performed according to institutional guidelines and
approved by local Animal Care and Use Committees.Hqmice were housed on
a 12-hr light:12-hr dark cycle in a temperature-controlled environment with
ad libitum access to water and chow at Innoser Netherlands BV, a com-
mercial mouse breeding company with a quarterly animal health monitoring
system that complies with the Federation of European Laboratory Animal
Science Associations (FELASA) guidelines and recommendations. All other
models were housed at local Institutes in Madrid, Hannover, and Rotterdam
on a 12-hr light:12-hr dark cycle in a temperature-controlled environment
with ad libitum access to water and chow with animal health monitoring
systems that comply with FELASA guidelines and recommendations. Ran-
domization of subjects to experimental groups or data analysis was based on

a single sequence of random assignments. Animal caretakers blinded in-
vestigators to animal group allocation before NGS sequencing and/or when
assessing the outcome.

Transthoracic Echocardiography. Noninvasive, echocardiographic parame-
ters were measured using a RMV707B (15 to 45 MHz) scan-head interfaced
with a Vevo-770 high frequency ultrasound system (VisualSonics). Long-axis
electrocardiogram-triggered cine loops of the LV contraction cycle were
obtained in B-mode to assess end-diastolic/systolic volume. Short-axis re-
cordings of the LV contraction cycle were taken in M-mode to assess wall
thickness of the anterior/posterior wall at the midpapillary level. From
B-mode recordings, LV length from basis to apex, LV internal diameter in
systole (LVIDs) and diastole (LVIDd) were determined. From M-mode recordings,
LV posterior wall thickness in systole (LV PWs) and diastole (LV PWd) were de-
termined. LV mass was calculated with the following formula: (0,8*(1.04*(((LVIDd +
LV PWd + IVSd)^3)-((LVIDd)^3))+0,6), and fractional shortening was calculated
with the following formula: (LVIDd-LVIDs)/LVIDd*100). EF was calculated as
((SV/Vd)*100) with Vs, systolic volume (3,1416*(LVIDs^3)/6), Vd, diastolic volume
(3,1416*(LVIDd^3)/6), and SV, stroke volume (Vd-Vs) (41).

Histological Analysis. Hearts were arrested in diastole, fixed with 4% para-
formaldehyde/phosphate-buffered saline solution, embedded in paraffin,
and sectioned at 4 μm. Paraffin sections were stained with Sirius Red for the
detection of fibrillar collagen or fluorescein isothiocyanate-labeled antibody
against wheat-germ-agglutinin to visualize and quantify the myocyte cross-
sectional area (1:100; Sigma-Aldrich). Cell surface areas and fibrotic areas
were determined using ImageJ imaging software (https://rsb.info.nih.gov/ij/).

RNA Isolation. Total RNA was extracted from myocardial tissue of mice eu-
thanized at the timepoints reported above using the Direct-zol RNAMiniPrep
method (Thermo Fisher), TriFast (Peqlab), or the RNeasy (Fibrous Tissue) Mini
Kit (QIAGEN) including DNase digestion following the manufacturer’s
protocol.

qPCR. Total RNA (1 μg) was reverse-transcribed using hexameric random
primers. The housekeeping gene ribosomal protein L7 (Rpl7), Tbp, or Gapdh
were used for normalization. Fold changes were determined using the 2-
ΔΔCT method. Real-time PCR primer sequences used in the study are: mouse
Nppa, 5′-TCTTCCTCGTCTTGGCCTTT-3′ and 3′-CCAGGTGGTCTAGCAGGTTC-5′;
mouse Nppb, 5′-TGGGAGGTCACTCCTATCCT-3′ and 3′-GGCCATTTCCTCCGA-
CTTT-5′ or 5′-CTGAAGGTGCTGTCCCAGAT-3′ and 5′-GTTCTTTTGTGAGGCCTT-
GG-3′; mouse Acta1, 5′-CCGGGAGAAGATGACTCAAA-3′ and 3′-GTAGTACGG-
CCGGAAGCATA-5′; mouse Myh7, 5′-CGGACCTTGGAAGACCAGAT-3′ and 3′-
GACAGCTCCCCATTCTCTGT-5′ or 5′-TCTCCTGCTGTTTCCTTACTTGCT-3′ and
5′-CAGGCCTGTAGAAGAGCTGTACTC-3′.; mouse Rpl7, 5′-GAAGCTCATCTA-
TGAGAAGGC-3′ and 3′-AAGACGAAGGAGCTGCAGAAC-5′; mouse Tbp, 5′-
TGGAATTGTACCGCAGCTTCA-3′ and 5′-CTGCAGCAAATCGCTTGGGA-3′; and
mouse Gapdh, 5′-TTCACCACCATGGAGAAGGC-3′ and 5′-GGCATGGACTGT-
GGTCATGA-3′.

DNA Isolation. Total DNA was extracted from heart tissues of naturally aged
mice of 104 wk of age and of mice with cardiomyocyte-specific Ercc1 gene
deletion. DNA was extracted using the Quick-DNA Miniprep Plus Kit (Zymo
Research) following the manufacturer’s protocol.

RNA-seq.Quality control of total RNAwas performed using the RNA 6000 Pico
Kit (Agilent Bioanalyzer) yielding RNA integrity number values of 6.3 and
higher. Removal of ribosomal RNA (rRNA) was carried out using the NEBNext
rRNA Depletion Kit Human/Mouse/Rat (NEB) followed by strand-specific
complementary DNA NGS library preparation (NEBNext Ultra II Directional
RNA Library Prep Kit for Illumina, NEB). The size of the resulting library was
controlled by use of a D1000 ScreenTape (Agilent 2200 TapeStation) and
quantified using the NEBNext Library Quant Kit for Illumina (NEB). Equi-
molar pooled libraries were sequenced in a paired end mode (75 cycles) on
the NextSEq. 500 System (Illumina) using version 2 chemistry yielding in an
average QScore distribution of 84% ≥ Q30 score.

DNA-seq. A total of 500 ng of the genomic DNA was sheared on the S220
instrument (Covaris) followed by NGS library preparation using the NEBNext
Ultra II DNA Library Prep Kit for Illumina (NEB). The size of the resulting library
was controlled by use of a D1000 ScreenTape (Agilent 2200 TapeStation)
and quantified using the NEBNext Library Quant Kit for Illumina (NEB).
Equimolar pooled libraries were sequenced in a paired-end mode (80 cycles)
on the NextSEq. 500 System (Illumina) using version 2 chemistry yielding in
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an average QScore distribution of 85% ≥ Q30 score. To rule out that we may
have missed an accumulation of mutational burden in myocardial tissue
(type II error), we sequenced genomic DNA derived from the spleen, liver,
and small intestine, in which such an accumulation is well-established
through the literature (16, 17), in order to prove that our NGS approach is
sensitive enough to pick up the signals.

RNA-seq Variant Calling. After quality control with FastQC (Andrews, S., 2014,
FastQC A Quality Control tool for High Throughput Sequence Data; https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), raw sequencing data
were read trimmed using trimmomatic (42) and aligned to the mouse ref-
erence genome GRCm38 with hisat2 version 2.1.0 (43). After marking du-
plicate reads, SNPs of the RNA reads were called separately using GATK (44)
version 3.7 according to the best practices for RNAsEq. (45, 46) The most
crucial step, in which the variant calling for RNA-seq differs from the DNA-
seq, is SplitNCigarReads in which the reads are split into their respective exon
segments. After calling the variants through Haplotypecaller, they were fil-
tered by Fisher strand values (30) and Quality by depth (2.0). The resulting
variants were called on the basis of the reference genome GRCm38; however,
the mice sequenced for the models of Hq, Ercc1, and natural aging were hy-
brid mice of different strains. To adjust for the influence of different strains in
the hybrid mice, we removed strain-specific variants from the set of called
variants. The strain specific variants for the strains 129S1, 129P2/OlaHsd, and
CBA were provided by the Mouse Genomes Project (47). Additionally, we
observed a peak of variants in the region around the affected genes in the
Tert and Progeria models. Since they were likely introduced by recombination
during model construction, they were removed from further analysis. For the
Tert model, this is a region of 27.3 Mb surrounding the Tert gene and for the
Progeria model it is an 18.1 Mb region around the Lmna gene.

Whole-Genome Variant Calling. After quality control with FastQC, the raw
sequencing data were read-trimmed using trimmomatic and aligned to the
mouse reference genome GRCm38 with Burrows–Wheeler Aligner Maximal
Exact Match version 0.7.12 (48). In both samples, an average genome-wide
coverage > 9 was reached, which we deem sufficient for the validation of
the RNA-seq detection approach. After marking duplicate reads and base
recalibration, SNPs were called using GATK version 3.7 Haplotypecaller. The
resulting SNPs were filtered for Fisher strand values (30) and Quality by
depth (2.0). Since the Ercc1-deficient and natural aging models were hybrid
mice, the variants were also filtered for strain-specific variants. This resulted
in 24076 variants for natural aging and 1687460 for Ercc1-deficient. A
technical summary of mapped reads and alignment rates for all sequencing
analyses is provided in SI Appendix, Table 3.

Statistical Analysis. The results are presented as mean ± SD (SD), SEM (SEM),
and lower and higher 95% CIs. Statistical approaches for bioinformatics
analyses are described above. Normal distribution of the samples was tested
using International Business Machines SPSS Statistics software applying the
Shapiro–Wilk test. Sample size was determined by a power calculation based
upon an echocardiographic effect size. All other statistical analyses were
performed using Prism software (GraphPad Software Inc.) and consisted of
ANOVA followed by a Bonferroni’s multiple comparison test when group
differences were detected at the 5% significance level. Differences were
considered significant when P < 0.05.

Data Availability. Anonymized sequencing data have been deposited in Gene
Expression Omnibus (GSE124087). All other study data are included in the
article and/or SI Appendix.
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